ヘッダーをスキップ
Oracle Databaseデータ・ウェアハウス・ガイド
10gリリース2(10.2)
B19217-02
  目次へ
目次
索引へ
索引

前へ
前へ
次へ
次へ
 

用語集

ETL

Extraction Transformation Loading(抽出、変換、ロード)。ETLは、ソース・データへアクセスし、加工し、データ・ウェアハウスへロードする方法を意味する。これらの処理の実行順序は様々である。

ETLのかわりに、ETT(extraction, transformation, transportation)やETM(extraction, transformation, move)が使用される場合もある。


関連項目:


OLAP

オンライン分析処理(OLAP)」を参照。

OLTP

オンライン・トランザクション処理(OLTP)」を参照。

SQLアクセス・アドバイザ(SQL Access Advisor)

SQLアクセス・アドバイザは、ユーザーが目標とするパフォーマンスを実現できるように、特定のワークロードに適切なマテリアライズド・ビュー、マテリアライズド・ビュー・ログおよび索引のセットを推奨する。これはOracle Enterprise ManagerのGUIであり、DBMS_ADVISORパッケージと同様の機能を持つ。

アドバイザ(advisor)

SQLアクセス・アドバイザ」を参照。

一意識別子(unique identifier)

同じ項目が1つ以上の場所に表示される場合に、その項目を区別することを目的とする識別子。

エンティティ(entity)

データベースのモデル化に使用される。リレーショナル・データベースでは、一般に表にマップされる。

親(parent)

階層内の所定の値より上のレベルにある値。たとえば、時間ディメンションでは、値Q1-99(99年第1四半期)は、値Jan-99(99年1月)の親とされる場合がある。


関連項目:


オンライン・トランザクション処理(OLTP)(online transaction processing)

オンライン・トランザクション処理。OLTPシステムは、高速で信頼性の高いトランザクション処理用に最適化されている。データ・ウェアハウス・システムに比べると、ほとんどのOLTPシステムには、比較的少数の行と多数の表のグループが含まれる。

オンライン分析処理(OLAP)(Online analytical processing)

OLAP機能は、履歴データに対する動的な多次元分析を特徴とする。次のような分析および操作に対応する。

OLAPツールは、多次元データベースを対象とする。またリレーショナル・データベースを直接利用することも可能である。

階層(hierarchy)

データを編成する手段として順序付けされたレベルを使用する論理構造。階層は、データ集計を定義するために使用できる。たとえば、時間ディメンションでは、階層を使用して月レベルから四半期レベル、年レベルへとデータを集計できる。階層は、Oracleでディメンション・オブジェクトの一部として定義できる。また、ドリルアップ、ドリルダウン操作のナビゲーション・パスの定義にも使用できるが、この場合、階層内のレベルは必ずしも集計された合計を示している必要はない。


関連項目:

ディメンションおよびレベル

加算的(additive)

加算することでサマリーできるファクト(またはメジャー)を示す。加算ファクトは、最も一般的なタイプのファクトである。ファクト/メジャーの例には、販売価格、原価および収益がある。「非加算的」および「準加算的」と対比。


関連項目:

ファクト

カーディナリティ(cardinality)

OLTPの観点では、表内の行数を指す。データ・ウェアハウスの観点では、一般に、列内の個別値の数を指す。データ・ウェアハウスのほとんどのDBAにとっては、カーディナリティ度のほうがより重要な問題点である。

カーディナリティ度(degree of cardinality)

表内の列の個別値の数を表内の行の合計数で割ったもの。これは、どの索引を作成するかの判断の際に特に重要である。一般に、カーディナリティ度の低い列にはビットマップ索引、カーディナリティ度の高い列にはBツリー索引を使用する必要がある。一般則として、1%未満のカーディナリティ度がビットマップ索引を使用する候補となる。

クエリー・リライト(query rewrite)

マテリアライズド・ビュー(事前に計算されたもの)を使用して問合せに迅速に答えるメカニズム。

クレンジング(cleansing)

ソース・データの非一貫性を解決し、異常を修正する処理。通常は、ETL処理の一部。


関連項目:

ETL

クロス積(cross product)

複数セットの要素群を組み合せる方法。たとえば、2つの列がある場合、最初の列の各要素は2番目の列の各要素と組み合せられる。単純例を次に示す。

Col1   Col2   Cross Product
----   ----   -------------
a      c      ac
b      d      ad
              bc
              bd

クロス積は、グルーピング・セットの連結時に行われる。第20章「データ・ウェアハウスにおける集計のためのSQL」を参照。

子(child)

階層内で、特定の値の直下のレベルにある値のこと。たとえば、Timeディメンションでは、値Jan-99は値Q1-99の子である。子値が複数の階層に属している場合は、1つの値が複数の親の子になることもある。


関連項目:


高位限界(high boundary)

サブスクリプション・ウィンドウの最も新しい行。

更新ウィンドウ(update window)

ウェアハウスの更新に使用できる時間の長さ。たとえば、ウェアハウスを更新するために夜間の8時間を使用できる。

更新頻度(update frequency)

新しいデータでデータ・ウェアハウスが更新される頻度。たとえば、ウェアハウスはOLTPシステムから毎晩更新できる。

高速リフレッシュ(fast refresh)

マテリアライズド・ビューに対して変更されたデータのみを適用する操作。この操作によって、マテリアライズド・ビューを一から再作成する必要がなくなる。

コモン・ウェアハウス・メタデータ(Common Warehouse Metadata: CWM)

Oracleデータ・ウェアハウスおよび意思決定支援で使用される標準リポジトリ。CWMリポジトリ・スキーマは他の製品が共有できるスタンドアロン製品で、それぞれ、その製品が作成するCWMリポジトリ内のオブジェクトのみを所有する。

サブジェクト領域(subject area)

組織の役割、知識領域を表現したり、識別するための分類方法。通常、1つのデータ・マートは、販売、マーケティングまたは地域などの1つのサブジェクト領域をサポートするために開発される。


関連項目:

データ・マート

サブスクライバ(subscriber)

パブリッシュされた変更データのコンシューマ。通常はアプリケーションである。

サブスクリプション(subscription)

単一チェンジ・セット内の1つ以上の対象ソース・テーブルの変更データに対するアクセスを制御するチェンジ・データ・キャプチャ・サブスクライバのメカニズム。サブスクリプションには1つ以上のサブスクライバ・ビューが含まれる。

サブスクリプション・ウィンドウ(subscription window)

サブスクライバが現在サブスクライバ・ビューで参照できるチェンジ・データ・キャプチャ・パブリケーションの行範囲を定義するメカニズム。

サマリー(summary)

マテリアライズド・ビュー」を参照。

サマリー・アドバイザ(Summary Advisor)

現在は、SQLアクセス・アドバイザに置き換えられている。「SQLアクセス・アドバイザ」を参照。

集計(aggregate)

サマリーされたデータ。たとえば、特定製品の売上数量を1日、1か月、四半期および1年ごとに集計できる。

集計操作(aggregation)

複数のデータ値を1つの値に集約する処理。たとえば、1日単位で集めた販売データを週レベルに集計したり、週のデータを月レベルに集計するなどの処理がこれに該当する。その後、データは集計データとして参照できる。集計サマリーと同義であり、集計データはサマリー・データと同義である。

準加算的(semi-additive)

全ディメンションについてではなく、一部のディメンションによって加算することでサマリーできるファクト(またはメジャー)を示す。準加算の例には、人数や手持在庫がある。「加算的」および「非加算的」と対比。

スキーマ(schema)

関連するデータベース・オブジェクトの集まり。リレーショナル・スキーマは、データベース・ユーザーIDでグルーピングされ、表、ビュー、その他のオブジェクトを含む。このマニュアルでは、shというサンプル・スキーマを使用している。

スター・クエリー(star query)

ファクト表および多数のディメンション表を結合するもの。各ディメンション表は、主キーから外部キーへの結合を使用してファクト表に結合される。ただし、ディメンション表同士は結合されない。

スター・スキーマ(star schema)

多次元データ・モデルを表現するように設計されたリレーショナル・スキーマ。スター・スキーマは、1つ以上のファクト表と外部キーを介して関連付けられている1つ以上のディメンション表で構成される。

ステージング・エリア(staging area)

ウェアハウスに入る前にデータが処理される場所。

ステージング・ファイル(staging file)

ウェアハウスに入る前のデータ処理に使用されるファイル。

スノーフレーク・スキーマ(snowflake schema)

ディメンション表の一部または全部が正規化されたタイプのスター・スキーマ。


関連項目:

スキーマおよびスター・スキーマ

スライスおよびダイス(slice and dice)

データの取得および操作を指す非公式用語。データ・ウェアハウスは、それぞれの軸がディメンションを表したデータのキューブ(立方体)と見ることができる。データをスライスするとは、ディメンションの一部または全部のメジャーと値を指定してキューブのピース(スライス)を取得することである。データ・スライスの取得時に、スライスを細切れ(ダイス)したように多数の小さなピースにし、データ列と行を移動したり並べ替えることもできる。適切にスライスおよびダイスされたシステムでは、大量のデータのナビゲーションが容易になる。

正規化(normalize)

リレーショナル・データベースにおいて、データを複数の表に分離することによりデータの冗長性を取り除くプロセス。「非正規化」と対比。

データを複数の表に分割し、データの冗長性を排除する処理。

ソース(source)

データ・ウェアハウス内のデータが導出されるデータベース、アプリケーション、ファイルまたはその他のデータ保管場所。

ソース・システム(source system)

データ・ウェアハウス内のデータが導出されるデータベース、アプリケーション、ファイルまたはその他のデータ保管場所。

ソース・テーブル(source table)

ソース・データベース内の表。

祖先(ancestor)

階層内で、特定の値よりも上位のレベルにある値。たとえば、Timeディメンションでは、値1999は値Q1-99とJan-99の祖先である。


関連項目:

階層およびレベル

属性(attribute)

1つあるいは複数のレベルの特徴を説明した特性。たとえば、衣料品製造業の製品ディメンションには品目と呼ばれるレベルが含まれ、その中に色という属性がある。属性は、エンド・ユーザーが類似した特性に基づいてデータを選択できる論理グループを意味する。

リレーショナル・モデルにおける属性は、エンティティの特性として定義される。Oracle Database 10gの場合、属性は単一レベルの要素を特徴付けるディメンションの列である。

ターゲット(target)

ETL処理過程において中間的または最終的な結果を保持する。ETL処理全体のターゲットは、データ・ウェアハウスである。


関連項目:

データ・ウェアハウスおよびETL

第3正規形(3NF)(third normal form)

正規化を通してデータの冗長性を最小化する、古典的なリレーショナル・データベース・モデリング技法。

第3正規形スキーマ(third normal form schema)

OLTPシステムで一般的に使用されているものと同じ種類の正規化を使用するスキーマ。第3正規形は、大規模なデータ・ウェアハウス、特に、データのロード要求が多く、データ・マートへのデータの入力および長時間実行問合せの実行に使用される環境用として選択されることがある。

妥当性チェック(validation)

メタデータ定義および構成パラメータを検証する処理。

チェンジ・セット(change set)

トランザクション一貫性が保証される、論理的にグループ化された変更データのセット。1つ以上のチェンジ・テーブルが含まれる。

チェンジ・テーブル(change table)

単一のソース・テーブルの変更データを含むリレーショナル表。チェンジ・データ・キャプチャのサブスクライバに対して、チェンジ・テーブルはパブリケーションとして知られる。

抽出(extraction)

ETLの初期フェーズにおいてソースからデータを取り出す処理。


関連項目:

ETL

低位限界(low boundary)

サブスクリプション・ウィンドウの最も古い行。

転送(transportation)

コピーまたは変換したデータをソースからデータ・ウェアハウスに移動する処理。


関連項目:

変換

ディテール(detail)

ファクト表」を参照。

ディテール表(detail table)

ファクト表」を参照。

ディメンション(dimension)

一般に、2通りの方法で使用される。

ディメンション値(dimension value)

ディメンションを構成するリストの一要素。たとえば、コンピュータ会社では、製品ディメンションにLAPPCやDESKPCなどのディメンション値を持つ場合がある。地理ディメンションには、BostonやParisなどの値が含まれる場合がある。時間ディメンションの値には、MAY96やJAN97などがある。

ディメンション表(dimension table)

ディメンション表は、時間、部門、所在地、製品などの階層情報および分類情報として表される企業のビジネス・エンティティを記述する。ディメンション表は、参照表と呼ばれる場合もある。

データ・ウェアハウス(data warehouse)

トランザクション処理用ではなく、問合せおよび分析用に設計されたリレーショナル・データベース。データ・ウェアハウスには、通常、トランザクション・データから導出された履歴データが含まれるが、別のソースからのデータを含めることもできる。データ・ウェアハウスにより、分析ワークロードとトランザクション・ワークロードを分離できる。また企業は、複数のソースのデータを統合できるようになる。

データ・ウェアハウス環境は、リレーショナル・データベースに加え、ETLソリューション、OLAPエンジン、クライアント分析ツール、およびデータ収集とビジネス・ユーザーへのデータ配信の処理を管理するその他のアプリケーションで構成されることが多い。

データソース(data source)

ウェアハウスにデータを提供するデータベース、アプリケーション、リポジトリまたはファイル。

データ・マート(data mart)

販売、マーケティング、金融など、特定のビジネス分野に対して設計されたデータ・ウェアハウス。依存型のデータ・マートの場合、データは企業全体のデータ・ウェアハウスから導出される。非依存型のデータ・マートの場合、データはソースから直接収集される。

導出ファクト(またはメジャー)(derived fact(or measure))

算術演算またはデータ変換を使用して既存のデータから生成されたファクト(またはメジャー)。例としては、平均、合計、割合、差などがある。

ドリル(drill)

1つの項目から一連の関連項目にナビゲートすること。ドリル操作には、通常、ある階層内のレベル間の上下へのナビゲートを伴う。データを選択する際、階層内でドリルダウンまたはドリルアップすることで、階層を開いたり閉じたりできる。


関連項目:

ドリルダウンおよびドリルアップ

ドリルアップ(drill up)

階層内で親の値に関連付けられている子の値のリストを閉じること。

ドリルダウン(drill down)

ビューを拡張して、親の値に関連付けられている子の値を階層内に含めること。


関連項目:

ドリルおよびドリルアップ

発行ID(publication ID)

チェンジ・データ・キャプチャが、パブリッシャによって定義された各チェンジ・テーブルに割り当てる固有の数値。

バージョニング(versioning)

新規要件および変更に対応して、データ・ウェアハウス・プロジェクトの新規バージョンを作成する機能。

パーティション(partition)

非常に大きな表および索引は、操作が難しく時間がかかる可能性がある。管理性を改善するために、表と索引をパーティションというより小さい部分に分解できる。

パブリケーション(publication)

単一のソース・テーブルの変更データを含むリレーショナル表。チェンジ・データ・キャプチャのパブリッシャは、チェンジ・テーブルとしてパブリケーションを参照する。

パブリッシャ(publisher)

通常、チェンジ・データ・キャプチャ・システムを構成するスキーマ・オブジェクトの作成とメンテナンスを担当するデータベース管理者。

パラレル化(parallelism)

いくつかのプロセスが作業の一部を処理できるようにタスクを分解すること。複数のCPUがそれぞれの部分を同時に実行すると、非常に大きくパフォーマンスが向上できる。

パラレル実行(parallel execution)

いくつかのプロセスが作業の一部を処理できるようにタスクを分解すること。複数のCPUがそれぞれの部分を同時に実行すると、非常に大きくパフォーマンスが向上できる。

非加算(nonadditive)

加算することでサマリーできないファクト(またはメジャー)を示す。非加算の例には、平均がある。「加算的」および「準加算的」と対比。

非正規化(denormalize)

表内の冗長性を許す処理。「正規化」と対比。

ピボット(pivoting)

入力ストリーム内の各レコードが、データ・ウェアハウスの適切な表にある多数のレコードに変換される変換処理。これは、リレーショナルでないデータベースからデータを取り出す際に特に重要である。

ファイルから表へのマッピング(file-to-table mapping)

フラット・ファイルからウェアハウス内の表へのデータのマップ。

ファクト(fact)

調査や分析の対象となるデータで、通常は数値データや加算データ。ファクト/メジャーの例には、販売価格、原価および収益がある。ファクトメジャーは同じ意味で、ファクトは主にリレーショナル環境で使用され、メジャーは主に多次元環境で使用される。

ファクト表(fact table)

ファクトを格納する、スター・スキーマ内の表。多くの場合、ファクト表には、ファクトを格納する列と、ディメンション表への外部キーとなる列の2種類の列がある。通常、ファクト表の主キーは、その表のすべての外部キーで構成されるコンポジット・キーである。

ファクト表には、詳細レベルのファクトまたは集計されたファクト(集計されたファクトを含むファクト表は、サマリー表と呼ばれることがある)のいずれかが含まれている。通常、ファクト表には同じ集計レベルのファクトが含まれている。

変換(transformation)

データを操作する処理。コピー操作以外の操作は変換である。変換の例には、複数のソースからのデータのクレンジング、集計および統合がある。

マッピング(mapping)

ソース・オブジェクトとターゲット・オブジェクトとの間の関係およびデータ・フローに関する定義。

マテリアライズド・ビュー(materialized view)

ファクト表(場合によってはディメンション表)の集計データまたは結合データで構成される事前計算表。サマリーまたは集計表とも呼ばれる。

メジャー(measure)

ファクト」を参照。

メタデータ(metadata)

データおよびその他の構造(オブジェクト、ビジネス・ルール、ビジネス・プロセスなど)を記述するデータ。たとえば、データ・ウェアハウスのスキーマ設計は、通常、メタデータとしてリポジトリに格納され、データ・ウェアハウスの作成と移入に使用するスクリプトを生成するために使用される。メタデータはリポジトリに含まれる。

データの例: ソースからターゲットへの変換に関する定義、データ・ウェアハウスの作成と移入に使用される。情報の例: 表、列、関連項目の定義、関連するモデル・ツール内に格納される。ビジネス・ルールの例: 1,000個を販売した後10パーセントの値引を行う。

モデル(model)

作成する内容を示すオブジェクト。典型的なスタイル、計画、設計。データ・ウェアハウスの構造を定義するメタデータ。

要素(element)

オブジェクトまたはプロセス。たとえば、ディメンションはオブジェクト、マッピングはプロセスであり、両方とも要素である。

リフレッシュ(refresh)

マテリアライズド・ビューを変更して新しいデータを反映するメカニズム。

リライト(rewrite)

クエリー・リライト」を参照。

レベル(level)

階層内での位置。たとえば、時間ディメンションは、月レベル、四半期レベルおよび年レベルのデータを表す階層を持つ。


関連項目:

階層

レベル値の表(level value table)

ディメンションおよび階層の一部として作成したレベルの値またはデータを格納するデータベース表。